
Lecture 4 Slide 1PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 4

Counters, Shift Registers &
Memory

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
E-mail: p.cheung@imperial.ac.uk

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/

Lecture 4 Slide 2PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Learning outcomes

v How to convert from binary to BCD format?

v How the generate various clock signals with different
periods?

v How to specify shift registers?

v How to design a Linear Feedback Shift Register (LFSR)
that produces pseudo-random binary sequence (PRBS)?

v How to specify ROM and RAM components?

v What is in Lab 2?

Lecture 4 Slide 3PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Displaying a binary number as decimal

! In Lab 1 Task 4, you are required to display the counter value as binary coded
decimal number instead of hexadecimal. A SystemVerilog component bin2bcd.sv
is provide.

! Hex numbers are difficult to interpret. Often we would like to see the binary value
displayed as decimal. For that we need to design a combinational circuit to
converter from binary to binary-coded decimal. For example, the value 8’hff or
8’b11111111 is converted to 8’d255 in decimal.

Lecture 4 Slide 4PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Shift and Add 3 algorithm [1] – shifting operation
! Let us consider converting hexadecimal number 8’h7C (which is decimal 8’d124)
! Shift the 8-bit binary number left by 1 bit = multiply number by 2
! Shifting the number left 8 times = multiply number by 28

! Now truncate the number by dropping the bottom 8 bits = divide number by 28

! So far we have done nothing to the number – it has the same value
! The idea is that, as we shift the number left into the BCD digit “bins”, we make the

necessary adjustment to the hex number so that it conforms to the BCD rule (i.e. falls
within 0 to 9, instead of 0 to 15)

Lecture 4 Slide 5PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Shift and Add 3 algorithm [2] – shift left with problem
! If we take the original 8-bit binary number and shift this three times into the BCD

digit positions. After 3 shifts we are still OK, because the ones digit has a value of
3 (which is OK as a BCD digit).

! If we shift again (4th time), the digit now has a value of 7. This is still OK. However,
no matter what the next bit it, another shift will make this digit illegal (either as
hexadecimal “e” or “f”, both not BCD).

! In our case, this will be a “f”!

Lecture 4 Slide 6PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Shift and Add 3 algorithm [3] – shift and adjust

! So on the fourth shift, we detect that the value is > or = 5, then we adjust this
number by adding 3 before the next shift.

! In that way, after the shift, we move a 1 into the tens BCD digit as shown here.

Lecture 4 Slide 7PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Shift and Add 3 algorithm [4] – full conversion

! In summary, the basic idea is to shift the binary number left, one bit at a time, into
locations reserved for the BCD results.

! Let us take the example of the binary number 8’h7C. This is being shifted into a
12-bit/3 digital BCD result of 12’d124 as shown below.

Lecture 4 Slide 8PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

SystemVerilog implementation - bin2bcd.sv

Lecture 4 Slide 9PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

A Flexible Timer – clktick.sv

! Instead of having a counter that count
events, we often want a counter to provide
a measure of time. We call this a timer.

! Here is a useful timer component that
uses a clock reference, and produces a
pulse lasting for one cycle every N+1
clock cycles.

! If “en” signal is low (not enabled), the clk
pulses are ignored.

clktick

clk

en
N

16

tickrst

clk

count N N-1 N-2 - - - - 1 0

tick

Lecture 4 Slide 10PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

clktick.sv explained

! “count” is an internal counter with WIDTH bits
! We use this as a down (instead of up) counter
! The counter value goes from N to 0, hence

there are N+1 clock cycles for each tick pulse

clk

count N N-1 N-2 - - - - 1 0

tick

Lecture 4 Slide 11PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Cascading counters

! By connecting clktick module in series with a counter module, we can produce a
counter that counts the number of millisecond elapsed as shown below.

50MHz

tick

1ms
CT cnt cnt + 1 cnt + 2

clktick

50MHz

1EN

16’d49999
16

tick

counter
16

Elapsed time (in ms)1’b1 1EN cnt

1R
reset

C1/- C1/+
1R

Lecture 4 Slide 12PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Clock divider (clkdiv.sv)

! Another useful module is a clock divider circuit.
! This produces a symmetrical clock output,

dividing the input clock frequency by a factor of
2*(K+1).

clkdiv

clkin

1EN

K
16

clkouten

clkin

count K K-1 K-2 - - - - 1 0 K

clkout

C1/-

Lecture 4 Slide 13PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

clkdiv.v explained

clkdiv

clkin

1EN

K
16

clkouten

C1/-

clkin

count K K-1 K-2 - - - - 1 0 K

clkout

Lecture 4 Slide 14PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Shift Register specification in SystemVerilog

data_out

sreg[4]
sreg[3]

1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
data_in

clk

sreg[2]sreg[1]

sreg[1]
sreg[2]
sreg[3]

Lecture 4 Slide 15PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Linear Feedback Shift Register (LFSR) (1)

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

u Assuming that the initial value is 4’b0001.
u This shift register counts through the sequence as

shown in the table here.
u This is now acting as a 4-bit counter, whose count

value appears somewhat random.
u This type of shift register circuit is called “Linear

Feedback Shift Register” or LFSR.
u Its value is sort of random, but repeat very 2N-1

cycles (where N = no of bits).
u The “taps” from the shift register feeding the XOR

gate(s) is defined by a polynomial as shown
above.

Lecture 4 Slide 16PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Primitive Polynomial

u This circuit implements the LFSR based on this primitive polynomial:
u The polynomial is of order 4 (highest power of x)
u This produces a pseudo random binary sequence (PRBS) of length 24 - 1 = 15
u Here is a table showing primitive polynomials at different sizes (or orders)

Primitive polynomial: 1 + X3 + X4

Lecture 4 Slide 17PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

lfsr4.sv

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

Primitive polynomial: 1 + X3 + X4

Lecture 4 Slide 18PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Simplified 4 x 4 ROM array

bit lines

word lines

With transistor = ‘0’
No transistor = ‘1’

Lecture 4 Slide 19PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Simplified 8 x 6 Static RAM array

Lecture 4 Slide 20PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

System Verilog specification of 256 x 8 ROM

addr[7:0] dout[7:0]

clk

rom
256 x 8

Verilator gives a warning unless you add an extra line!!!!!

Lecture 4 Slide 21PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Initialization of the ROM

sinegen.py sinerom.mem

addr[7:0] dout[7:0]

clk

rom
256 x 8

Lecture 4 Slide 22PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Simple Sinewave Generator

address[7:0] dout[7:0]

rom

count[7:0]

incr[7:0]

clk

counter

rst

en

Instantiate counter module called addrCounter

Internal signal name

external signal name

Lecture 4 Slide 23PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Parameterised ROM:

addr[9:0] dout[8:0]

clk

rom
1024 x 9

Lecture 4 Slide 24PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Dual-port ROM

addr1[7:0]

dout1[7:0]

clk

rom2ports
256 x 8

addr2[7:0]

dout1[7:0]

Lecture 4 Slide 25PYKC 22 Oct 2024 EIE2 Instruction Architectures & Compilers

Dual-port RAM

wr_addr[7:0]

din[7:0]

clk

ram2ports
256 x 8

rd_addr [7:0]

dout[7:0]

wr_en rd_en

